Synthesis and Characterization of Metronidazole and Heterocycle Ester Dyads for Tyrosinase Inhibitory Activity


  • S. R. Elavarasu Department of Chemistry, Government Arts College (Autonomous), Salem-636007, Tamil Nadu, India
  • S. Senthil Department of Chemistry, Government Arts College (Autonomous), Salem-636007, Tamil Nadu, India



Metronidazole ester, Molecular docking, Inhibitors, Melanogenesis, Tyrosinase activity


Tyrosinase is an important copper-based enzyme mainly involved in skin pigmentation. The inhibition of the tyrosinase enzyme attracts importance in cosmetic and medicinal chemistry industry for its applications in skin whitening and anti-browning agents for humans as well as in food, agriculture industries. Imidazole based Metronidazole and its derivatives are widely accepted drug for wide range of diseases. Therefore, the present report involves the synthesis of heterocyclic derivatives of metronidazole and investigation of its efficacy towards the tyrosinase inhibitory activity. A series of metronidazole esters were synthesized and their chemical structures were confirmed using spectral techniques like, infrared spectroscopy (IR), proton nuclear magnetic resonance (1H-NMR), and liquid chromatography-mass spectrometry (LC-MS). All the compounds were evaluated for its tyrosinase inhibitory activity by oxidation of 3,4-dihydroxyphenylalanine in the presence of the synthesized esters(I-VIII) with kojic acid as standard. Among the synthesized compounds, VII (isonicotinic ester) and VIII (quinoline ester) demonstrated significant activity IC50 values 92.5 and 91.8µM respectively. Further molecular docking experiments were carried out for the synthesized compounds with 2y9w protein exhibited greater number of physical interactions for compounds VII and VIII than the other compounds in the series confirming the mushroom tyrosinase activity.


Download data is not yet available.


Chang TS. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 2009 Jun; 10:2440-75. Available from:

Lee SG, Karadeniz F, SeoY, Kong CS. Anti-melanogenic effects of flavonoid glycosides from Limonium tetragonum (Thunb.) bullock via inhibition of tyrosinase and tyrosinase related proteins.Molecules.2017 Sep 5;22(9):1480. Available from: doi: 10.3390/molecules22091480

Matsuo K, Kobayashi M, Takuno Y, Kuwajima H, Ito H, Yoshida T. Anti-tyrosinase activity constituents of Arctostaphylos uva-ursi.YakugakuZasshi. 1997 Dec; 117 (12): 1028-32. Available from:

Alam N, Yoon KN, Lee JS, Cho HJ, Lee TS. Consequence of the antioxidant activities and tyrosinase inhibitory effects of various extracts from the fruiting bodies of Pleurotus ferulae. Saudi. J. Biol. Sci. 2012 Jan; 19: 111-118. Available from: https:doi:10.1016/j.sjbs.2011.11.004

Kim NY, Kwon HS, Lee HY. Effect of inhibition on tyrosinase and melanogenesis of Agastache rugosa Kuntze by lactic acid bacteria fermentation. J. Cosmet. Dermatol. 2017 Sep; 16 (3):407-15. Available from: doi: 10.1111/jocd.12264

McEvily AJ. Iyengar R, Otwell WS. Inhibition of enzymatic browning in foods and beverages. Crit. Rev Food Sci. Nutr. 1992 Sep 29; 32(3): 253-73. Available from:

Frankos VH, Schmitt DF, Haws LC, McEvily AJ, Iyengar R, Miller SA, Clydesdale FM, Forbes AL, Sauer RM. Generally recognized as safe (GRAS) evaluation of 4-hexylresorcinol for use as a processing aid for prevention of melanosis in shrimp. Regul.Toxicol.Pharmacol.1991Oct;14(2):202-12.Available from:http://doi: 10.1016/0273-2300(91)90007-i

Orhan IE, Hassan Khan MT. Flavonoid derivatives as potent tyrosinase inhibitors – a survey of recent findings between 2008–2013.Curr. Top. Med. Chem. 2014; 14 (12):1486. Available from: doi: 10.2174/1568026614666140523120741

Jegal J, Park SA,Chung K,Chung,Lee J,Jeong EJ, Him KH,Yang MH. Tyrosinase inhibitory flavonoid from Juniperus communisfruits.Biosci.Biotechnol.Biochem.2016 Dec; 80(12): 2311-2317.Available from: doi:10.1080/09168451.2016.1217146

Muhammad D, Hubert J, Lalun N,Renault JH, Bobichon H, Nour M, Nazabadioko LV. Isolation of flavonoids and triterpenoids from the fruits of Alphitonianeocaledonica and evaluation of their anti-oxidant, antityrosinase and cytotoxic activities. Phytochem. Anal. 2015 Mar; 26(2):137-44. Available from: doi: 10.1002/pca.2545

Erdogan Orhan I, Senol FS, Aslan Erdem S, Irem Tatli I, Kartal M, Alp S. Tyrosinase and cholinesterase inhibitory potential and flavonoid characterization of Viola odorata L. (Sweet Violet).Phytother. Re. 2015 Sep; 29(9):1304-10. Available from: doi: 10.1002/ptr.5378

Jones K, Hughes J, Hong M, Jia Q, Orndorff S. Modulation of melanogenesis by aloesin: a competitive inhibitor of tyrosinase. Pigment Cell Res. 2002 Sep 5; 15(5): 335-40. Available from: doi:10.1034/j.1600-0749.2002.02014.x.

Chen J, Xiaojing Yu, Huang Y. Inhibitory mechanisms of glabridin on tyrosinase. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2016 Nov 5;168:111-17. Available from: doi: 10.1016/j.saa.2016.06.008

Xia L, Idhayadhulla A, Lee Y, Kim SH, Wee YJ. Antioxidant and antibacterial evaluation of synthetic furomollugin and its diverse analogs.Medicinal Chemistry Research.2014Feb 12;23:3528-38.Available from: doi:

Gupta R, Sharma S, Singh R, Vishwakarma RA,Mignani S, Singh PP. Functionalized Nitroimidazole Scaffold Construction and Their Pharmaceutical Applications: A 1950–2021 Comprehensive Overview. Pharmaceuticals. 2022 Apr 30; 15(5):561. Available from:

Hu YG, Gao ZP, Zheng YY, Hu CM, Lin J, Wu XZ, Zhang X, Zhou YS, Xiong Z, Zhu DY. Synthesis and Biological Activity Evaluation of 2-Cyanopyrrole Derivatives as Potential Tyrosinase Inhibitors. Front. Chem. 2022 Jun 17; 10: 914944. Available from: doi:10.3389/fchem.2022.914944

Maddila S, Pagadala R, Jonnalagadda SB. 1,2,4-Triazoles: a review of synthetic approaches and the biological activity. Lett. Org. Chem. 2013 July 19;10 (10): 693-714.Available form: doi:10.2174/157017861010131126115448

Crozet MD, Terme T,Vanelle P. Designing new 5-nitroimidazoles: Towards safer anti-infectious agents. Lett. Drug Des. Discov. 2014; 11: 531-59. Available from: doi: 10.2174/1570180810666131122010615

Rajão MA, Furtado C, Alves CL, Passos-Silva DG, de Moura MB, Schamber-Reis BL,Kunrath-Lima M, Zuma AA, Vieira-da-Rocha JP, Garcia JBF. Unveiling Benznidazole’s mechanism of action through over expression of DNA repair proteins in Trypanosoma cruzi. Environ. Mol. Mutagenesis. 2013 Dec 13; 55 (4):309-21. doi: Available form: 10.1002/em.21839

Rami M, Dubois L, Parvathaneni NK, Alterio V, van Kuijk SJA, Monti SM, Lambin P, De Simone G,Supuran CT, Winum JY. Hypoxia-Targeting Carbonic Anhydrase IX Inhibitors by a New Series of Nitroimidazole Sulfonamides/Sulfamides/Sulfamates. J. Med. Chem. 2013 Nov 14;56(21): 8512-20.Available form:doi: 10.1021/jm4009532

Kubo I,Kinst-Hori I. Tyrosinase inhibitors from cumin. J. Agric. Food Chem. 1998 Dec 3;46 (12): 5338-5341.Available form:

Duan YT, Wang ZC,SangYL,Tao XX, Teraiya SB, Wang PF,Wen Q, Zhou XJ, Ding L, Yang YH, Zhu HL. Design and synthesis of 2-styryl of 5-Nitroimidazole derivatives and antimicrobial activities as FabH inhibitors, Eur. J. Med. Chem. 2014 Apr 9;76: 387-96. Available from: doi:10.1016/j.ejmech.2014.02.004

Jorgensen MA, Manos J, Mendz GL Hazell SL. The mode of action of metronidazole in Helicobacter pylori: futile cycling or reduction.J.Antimicrob.Chemother. 1998Jan;41(1):67-75.Available from: doi: 10.1093/jac/41.1.67

Jarrad AM, Karoli T, Debnath A, Tay CY, Huang JX, Kaeslin G,Elliott AG,Miyamoto Y, Ramu S,Kavanagh AMJ, Zuegg J, Eckmann L, Mark A T Blaskovich, Cooper MA. Metronidazole-triazole conjugates: Activity against Clostridium difficile and parasites. Eur. J. Med. Chem. 2015 Aug 28;101: 96-102.Available form:doi:10.1016/j.ejmech.2015.06.019.1

Du QR, Dong Li D, Zhou Pi Y, Ran Li j, Jain Sun, FangxF, Zhongx WQ, Bin Gong H, Liang Zhu H. Novel 1,3,4-oxadiazole thioether derivatives targeting thymidylate synthase as dual anticancer/antimicrobial agents.Bioorg. Med. Chem. 2013 Apr 15;21(8): 2286-97. Available from: doi: 10.1016/j.bmc.2013.02.008

Feng Wang S, Yin Y,Qiao F, Wu X, Sha S, Zhang L, Liang Zhu H. Synthesis, molecular docking and biological evaluation of metronidazole derivatives containing piperazine skeleton as potential antibacterial agents.Bioorg. Med. Chem. 2014 Apr 15;22(8): 2409-15. Available from: doi: 10.1016/j.bmc.2014.03.004

Maddili SK, Zhen Li Z, Kannekanti VK, Bheemanaboina RRY. Tuniki B,Tangadanchu VKR, He Zhou C. Azoalkyl ether imidazo[2,1-b]benzothiazoles as potentially antimicrobial agents with novel structural skeleton. Bioorg. Med. Chem. Lett. 2018 Aug 1;28(14): 2426-31. Available from: doi: 10.1016/j.bmcl.2018.06.016

Ullah A, Iftikhar F,Arfan M, Batool Kazmi ST, Anjum MN,I San-Ul-Haq,Ayaz M, Farooq S, Rashid U. Amino acid conjugated antimicrobial drugs: Synthesis, lipophilicity- activity relationship, antibacterial and urease inhibition activity. Eur. J. Med. Chem. 2018 Feb 10; 145: 140-143.Available form:doi:10.1016/j. ejmech.2017.12.089

Qiu Li H, Chen Xu, Sen Li H,PingXiao Z, Shi L, Liank Zhu H. Metronidazole–Flavonoid Derivatives as Anti- Helicobacter pylori Agents with Potent Inhibitory Activity against HPE-Induced Interleukin-8 Production by AGS Cells.Chem.Med.Chem.2007 Sep;2(9): 1361-9. Available from: doi: 10.1002/cmdc.200700097

Feng Cui S, Ping Peng L, Zhen Zhang H, Rasheed S, Kumar KV, He Zhou C. Novel hybrids of metronidazole and quinolones: synthesis, bioactive evaluation, cytotoxicity, preliminary, antimicrobial mechanism and effect of metal ions on their transportation by human serum albumin. Eur. J. Med. Chem. 2014 Oct 30;86: 318-34.Available form: doi:10.1016/j.ejmech.2014.08.063

Zhang X, Sangani CB, Xin Jia L, Xian Gong P, Wang F, Jun-Fang Wang, Liang Zhu H. Synthesis and antibacterial evaluation of novel Schiff's base derivatives of nitroimidazole nuclei as potent E. coli FabH inhibitors. RSC Adv. 2014 Sep;4: 54217. Available from: doi: 10.1039/C4RA08567A

Qian Y, Jia Zhang H, Zhang H, Xu C, Zhao J, Liang Zhu H. Synthesis, molecular modeling, and biological evaluation of cinnamic acid metronidazole ester derivatives as novel anticancer agents, Bioorg. Med. Chem.2010 Jul 15;18(14): 4991-6. Available from:doi: 10.1016/j.bmc.2010.06.003

Sun J.Cheng Lv P, Jiao Guo F, Yi Wang X, Zhang Y, Hua Sheng G,Song Qian S, Liang Zhu H. Aromatic diacylhydrazine derivatives as a new class of polo-like kinase 1 (PLK1) inhibitors. Eur. J. Med. Chem. 2014 Jun 23;81: 420-6. Available from: doi: 10.1016/j.ejmech.2014.05.026

Wang Chen L, Fei Wang P, Jie Tang D, Xiang Tao X, Jun Man R, Yue Qiu H, Chang Wang Z, Chen Xu, Liang Zhu H. Metronidazole containing pyrazole derivatives potently inhibit tyrosyl-tRNA synthetase: design, synthesis, and biological evaluation. Chem. Biol. Drug Des. 2016 Oct;88(4):592-8.

Bkhaitan MM, Alarjah M, Mirza AZ,Abdalla AN, El-Said HM, Faidah HS. Preparation and biological evaluation of metronidazole derivatives with monoterpenes and eugenol. Chem. Biol. Drug Des.2018 Dec;92(6):1954-1962. Available from:

Islam NM, Iskander MN, Microtubulin binding sites as target for developing anticancer agents. Mini-Rev. Med. Chem. 2004 Dec;4(10):1077-104. Available from: doi: 10.2174/1389557043402946

Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem. 2019 Dec;34(1):279-309. doi: 10.1080/14756366.2018.1545767. PMID: 30734608; PMCID: PMC6327992.

Chen MJ, Hung CC, Chen YR, Lai ST, Chan CF. Novel synthetic kojic acid-methimazole derivatives inhibit mushroom tyrosinase and melanogenesis. J Biosci Bioeng. 2016 Dec;122(6):666-672. Available from: https://doi: 10.1016/j.jbiosc.2016.06.002.

Elavarasu SR, Senthil S. Synthesis and Characterization of Metronidazole Derivatives for Tyrosinase Inhibitory Activity. Indian J. Heterocycl. Chem., 2023 Oct-Dec; 33(4): 445–451. Availablefrom:






Research Article

How to Cite

“Synthesis and Characterization of Metronidazole and Heterocycle Ester Dyads for Tyrosinase Inhibitory Activity”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 16, no. 2, Mar. 2024, pp. 191-8,