Comparative Antioxidant and Phytochemical Evaluation of Selected Varieties of Colocasia esculenta (L.) Schott Leaves


  • Joycy Varghese V Department of Botany, St. Teresa’s College (Autonomous), Ernakulam, Kerala, India
  • Athira R. K. Nair Department of Botany, St. Teresa’s College (Autonomous), Ernakulam, Kerala, India
  • Elsam Joseph Department of Botany, St. Teresa’s College (Autonomous), Ernakulam, Kerala, India



Antioxidant activity, Colocasia esculenta, DPPH assay, LC-MS, Nitric oxide assay, Soxhlet extraction, Taro.


Sree Kiran, Sree Rashmi, Sree Pallavi, and Muktakeshi are the four commonly cultivated varieties of Colocasia esculenta (L.) Schott. The current study aims to perform phytochemical screening and the antioxidant capacity of the leaf extracts of these varieties. Furthermore, LCMS was used to examine the polyphenolic content of Muktakeshi's ethanolic leaf extract. The phytochemical analysis of the cultivars indicated that all extracts contained beneficial phytocompounds like phenols, terpenoids, flavonoids, alkaloids, saponins, and tannins. The ethanolic leaf extract of Muktakeshi was found to have greater levels of total phenol (39.47±0.47 GAE mg/g) and flavonoid (49.672±0.15 QE mg/g) contents. All the leaf extracts exhibited a moderate antioxidant ability, whereas the ethanolic extract of Muktakeshi exhibited comparatively higher antioxidant potential in both DPPH (88.3±0.58%) and nitric oxide (84.6±0.79%) assays with the least IC50 value. The LCMS studies detected eight polyphenolic compounds like quercetin, kaempferol, gallic acid, caffeic acid, luteolin 7-rutinoside, chlorogenic acid, vitexin, and rutin in the ethanolic leaf extract of Muktakeshi. It is a good source of many potentially effective bioactive compounds and helps to prevent human oxidative stress-associated diseases. The present study found considerable variations in the phenol-flavonoid content and antioxidant properties of the Colocasia varieties studied.


Download data is not yet available.


Odedeji JO, Oyeleke GO, Ayinde LA, Azeez LA. Nutritional, antinutritional compositions and organoleptic analyses of raw and blanched cocoyam (Colocasia esculenta) leaves. IOSR J. Environ. Sci. Toxicol. Food Technol. 2014;8(2):45-48. Available from:

Park HR, Lee HS, Cho SY, Kim YS, Shin KS. The anti-metastatic effect of polysaccharide isolated from Colocasia esculenta is exerted through immunostimulation. Int. J. Mol. Med. 2013;31(2):361-368. Available from:

Dhanraj BN, Kadam MS, Patil KN, Mane VS. Phytochemical screening and antibacterial activity of western region wild leaf Colocasia esculenta. Int. Res. J. Biological Sci. 2013;2(10):18-21.

Rashmi DR, Raghu N, Gopenath TS, Palanisamy P, Bakthavatchalam P, Karthikeyan M, Gnanasekaran A, Ranjith MS, Chandrashekrappa GK, Basalingappa KM. Taro (Colocasia esculenta): An overview. J. Med. Plants Stud. 2018;6(4):156-161.

Esposito T, Pisanti S, Mauro L, Mencherini T, Martinelli R, Aquino RP. Activity of Colocasia esculenta (Taro) corms against gastric adenocarcinoma cells: Chemical study and molecular characterization. Int. J. Mol. Sci. 2023;25(1):252. Available from:

Mengane SK. Antifungal activity of the crude extracts of Colocasia esculenta leaves in vitro on plant pathogenic fungi. Int. Res. J. Pharm. 2015;6(10):713-714. Available from: doi.10.7897/2230-8407.0610138

More SJ, Kumari SD, Kumar JS, Ravi V. Water stress revealed physiological and biochemical variations in taro [Colocasia esculenta (L.) Schott] varieties/genotypes. Int. J. Curr. Microbiol. App. Sci. 2019;8(8):2242-2253. Available from:

Mukherjee A, Chakrabarti SK, George J, Prakash R, Choudhury DR, Pati K, Nedunchezhiyan M, Satapathy BS, Sengupta S, Mhaskar N, Singh PP. DUS characters in tropical tuber crops, farmers friendly tools for food, nutrition and livelihood security. Int. J. Trop. Agric. 2015;33(4):3793-3802.

Mohan G, Raju J, Shiny R, Abhilash PV, Soumya S, Sheela MN, Byju G. Biochemical, mineral, and proximate composition of Indian cassava varieties. Int. J. Chem. Stud. 2019;7(4):1059-1065.

Nath VS, Basheer S, Jeeva ML, Hegde VM, Devi A, Misra RS, Veena SS, Raj M. A rapid and efficient method for in vitro screening of taro for leaf blight disease caused by Phytophthora colocasiae. J. Phytopathol. 2016;164(7):520-527. Available from:

Wudali SN, Barwad A, Banadka A, Shaikh A, Al-Khayri JM, Nagella P. Bioactive compounds and biological activities of taro (Colocasia esculenta (L.). Schott). In: Murthy HN, Paek KY, Park SY, editors. Bioactive compounds in the storage organs of plants. Switzerland: Springer Nature; 2023. p. 1-23.

Kamboj R, Bera MB, Nanda V. Evaluation of physico‐chemical properties, trace metal content and antioxidant activity of Indian honeys. Int. J. Food Sci. Technol. 2013;48(3):578-587. Available from:

Abraham K, Edison S, Unnikrishnan M, Sheela MN, Vimala B, Sreekumari MT, et al. Tuber crop varieties released by Central Tuber Crops Research Institute. Thiruvananthapuram, India: ICAR; 2006.

Nair AR, Joseph E. Phytochemical screening and GC MS analysis of Medinilla beddomei CB Clarke Leaf. Int. J. Botany stud. 2022;7(1):430-433.

Harborne JB. Phytochemical Methods: A guide to modern techniques of plant analysis. 2nd ed. New York, USA: Chapmer and Hall; 1984.

Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. and Vitic. 1965;16(3):144-158. Available from:

Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999;64(4):555-559. Available from:

Buranasudja V, Rani D, Malla A, Kobtrakul K, Vimolmangkang S. Insights into antioxidant activities and anti-skin-aging potential of callus extract from Centella asiatica (L.) Sci. Rep. 2021;11(1):13459. Available from:

Chidambaram U, Pachamuthu V, Natarajan S, Elango B, Ramkumar KM. In vitro evaluation of free radical scavenging activity of Codariocalyx motorius root extract. Asian Pac. J. Trop. Med. 2013;6(3):188-194. Available from:

Sultana T, Mitra AK, Das S. Evaluation of anti-cancer potential of Excoecaria agallocha (L.) leaf extract on human cervical cancer (SiHa) cell line and assessing the underlying mechanism of action. Futur. J. Pharm. Sci. 2022;8(1):3. Available from:

Begum M, Narasimha K. Phytochemical screening, in-vitro anti-oxidant activity and gas chromatography–mass spectrometry analysis of methanolic extracts of Smilax perfoliata and Breynia retusa. Int. J. Pharm. Sci. Drug Res. 2022;14(6):799-810. Available from: IJPSDR.2022.140618

Muñoz-Cuervo I, Malapa R, Michalet S, Lebot V, Legendre L. Secondary metabolite diversity in taro, Colocasia esculenta (L.) Schott, corms. J. Food Compos. Anal. 2016;52:24-32.

Ejoh AR, Mbiapo FT, Fokou E. Nutrient composition of the leaves and flowers of Colocasia esculenta and the fruits of Solanum melongena. Plant Food Hum. Nutr. 1996;49:107-112. Available from:

Ferreres F, Gonçalves RF, Gil-Izquierdo A, Valentão P, Silva AM, Silva JB, Santos D, Andrade PB. Further knowledge on the phenolic profile of Colocasia esculenta (L.) Shott. J. Agric. Food Chem. 2012;60(28):7005-7015. Available from:

Keshav A, Sharma A, Mazumdar B. Phytochemical analysis and antioxidant activity of Colocasia esculenta (L.) leaves. Int. J. Chem. Eng. 2019;13(1):20-23.

Krishnapriya TV, Suganthi A. Biochemical and phytochemical analysis of Colocasia esculenta (L.) Schott tubers. Int. J. Res. Pharm. Pharm. Sci. 2017;2(3):21-25.

Umamaheswari M, Chatterjee TK. In vitro antioxidant activities of the fractions of Coccinia grandis L. leaf extract. Afr. J. Trad. CAM. 2008;5(1):61-73. Available from:

Hari V, Jothieswari D, Maheswaramma KS. Total phenolic, flavonoid content, and antioxidant activity of Justicia tranquebariensis LF and Cycas Beddomei Dyer. leaves. Int. J. Pharm. Sci. Drug Res. 2022;14(1):48-53. Available from:

Imchen P, Zhimomi BK, Phucho T. Study on trace element and phytochemical profiling of Alpinia galanga rhizome and Clerodendrum colebrookianum leaves extracts and their in-vitro bioactivity. Int. J. Pharm. Sci. Drug Res. 2022;14(6):661-667. Available from:

Al-Kaf AG, Al-Deen AM, ALhaidari SA, Al-Hadi FA. Phytochemical analysis and antimicrobial activity of Colocasia esculenta (taro) medicinal plant leaves used in folk medicine for treatment of wounds and burns in Hufash district al Mahweet Governorate–Yemen. Univers. J. Pharm. Res. 2019;4(2):32-35. Available from:

Chakraborty P, Deb P, Chakraborty S, Chatterjee B, Abraham J. Cytotoxicity and antimicrobial activity of Colocasia esculenta. J. Chem. Pharm. Res. 2015;7(12):627-635.

Agyare C, Boakye YD, Apenteng JA, Dapaah SO, Appiah T, Adow A. Antimicrobial and anti-inflammatory properties of Anchomanes difformis (Bl.) Engl. and Colocasia esculenta (L.) Schott. Biochem. Pharm. (Los Angel). 2016;5(1): 1-5. Available from:

Nwozo OS, Effiong EM, Aja PM, Awuchi CG. Antioxidant, phytochemical, and therapeutic properties of medicinal plants: A review. Int. J. Food Prop. 2023;26(1):359-388. Available from:

Dudonne S, Vitrac X, Coutiere P, Woillez M, Mérillon JM. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009;57(5):1768-1774. Available from:

Sharma S, Jan R, Kaur R, Riar CS. Taro (Colocasia esculenta). In: Nayik GA, Gull A, editors. Antioxidants in vegetables and nuts-properties and health benefits. Singapore: Springer; 2020. p. 341-353.

Prajapati R, Kalariya M, Umbarkar R, Parmar S, Sheth N. Colocasia esculenta: A potent indigenous plant. Int. J. Nutr. Pharmacol. Neurol. Dis. 2011;1(2):90-96. Available from: 10.4103/2231-0738.84188

Vinha AF, Ferreres F, Silva BM, Valentao P, Gonçalves A, Pereira JA, Oliveira MB, Seabra RM, Andrade PB. Phenolic profiles of Portuguese olive fruits (Olea europaea L.): Influences of cultivar and geographical origin. Food Chem. 2005;89(4):561-568. Available from:

Adefegha SA. Impact of pasting on starch composition, estimated glycemic index, phenolic constituents, antioxidant activities and antidiabetic properties of flour produced from cocoyam (Colocasia esculenta) corm. J. Food Biochem. 2018;42(4):12514. Available from:

Keskes H, Belhadj S, Jlail L, El Feki A, Damak M, Sayadi S, Allouche N. LC-MS-MS and GC-MS analyses of biologically active extracts and fractions from Tunisian Juniperus phoenice leaves. Pharm. Biol. 2017;55(1):88-95. Available from:

Ertas A, Yilmaz MA, Firat M. Chemical profile by LC-MS/MS, GC/MS and antioxidant activities of the essential oils and crude extracts of two Euphorbia species. Nat. Prod. Res. 2015;29(6):529-534. Available from:

Vashisth P, Nikhil K, Pemmaraju SC, Pruthi PA, Mallick V, Singh H, Patel A, Mishra NC, Singh RP, Pruthi V. Antibiofilm activity of quercetin-encapsulated cytocompatible nanofibers against Candida albicans. J. Bioact. Compat. Pol. 2013;28(6):652-665. Available from:

Bangar SP, Chaudhary V, Sharma N, Bansal V, Ozogul F, Lorenzo JM. Kaempferol: A flavonoid with wider biological activities and its applications. Crit. Rev. Food Sci. Nutr. 2023;63(28):9580-9604. Available from: 10.1080/10408398.2022.2067121

Silva dos Santos J, Goncalves Cirino JP, de Oliveira Carvalho P, Ortega MM. The pharmacological action of kaempferol in central nervous system diseases: A review. Front. Pharmacol. 2021;11:565700. Available from:

Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, Momtaz S, Abbasabadi Z, Rahimi R, Farzaei MH, Bishayee A. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran. J. Basic Med. Sci. 2019;22(3):225. Available from:

Taamalli A, Iswaldi I, Arráez‐Román D, Segura‐Carretero A, Fernández‐Gutiérrez A, Zarrouk M. UPLC–QTOF/MS for a rapid characterisation of phenolic compounds from leaves of Myrtus communis L. Phytochem. Anal. 2014;25(1):89-96. Available from:

Touaibia M, Jean-Francois J, Doiron J. Caffeic acid, a versatile pharmacophore: An overview. Mini-Rev. Med. Chem. 2011;11(8):695-713. Available from: 10.2174/138955711796268750

Li Y, Jiang F, Chen L, Yang Y, Cao S, Ye Y, Wang X, Mu J, Li Z, Li L. Blockage of TGFβ-SMAD2 by demethylation-activated miR-148a is involved in caffeic acid-induced inhibition of cancer stem cell-like properties in vitro and in vivo. FEBS Open Bio. 2015;5:466-75. Available from:

Wang L, Pan X, Jiang L, Chu Y, Gao S, Jiang X, Zhang Y, Chen Y, Luo S, Peng C. The biological activity mechanism of chlorogenic acid and its applications in food industry: A review. Front. Nutr. 2022;9:943911. Available from:

Belabdelli F, Bekhti N, Piras A, Benhafsa FM, Ilham M, Adil S, Anes L. Chemical composition, antioxidant and antibacterial activity of Crataegus monogyna leaves’ extracts. Nat. Prod. Res. 2022;36(12):3234-3239. Available from:

Zhong L, Lin Y, Wang C, Niu B, Xu Y, Zhao G, Zhao J. Chemical profile, antimicrobial and antioxidant activity assessment of the crude extract and its main flavonoids from Tartary buckwheat sprouts. Mol. 2022;27(2):374. Available from:






Research Article

How to Cite

“Comparative Antioxidant and Phytochemical Evaluation of Selected Varieties of Colocasia esculenta (L.) Schott Leaves”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 16, no. 3, May 2024, pp. 370-7,