Metallic Mysteries: Deciphering Their Contribution to Alzheimer’s Pathogenesis

Authors

  • SA Kalwaghe Department of Pharmacology, Dr. D. Y. Patil College of Pharmacy, Pune, Maharashtra, India
  • SS Sadar Department of Pharmacology, Dr. D. Y. Patil College of Pharmacy, Pune, Maharashtra, India
  • Pradip Porwal Department of Pharmacology, Dr. D. Y. Patil College of Pharmacy, Pune, Maharashtra, India
  • Shubhangi Daswadkar Department of Pharmacology, Dr. D. Y. Patil College of Pharmacy, Pune, Maharashtra, India
  • NS Vyawahare Department of Pharmacology, Dr. D. Y. Patil College of Pharmacy, Pune, Maharashtra, India

DOI:

https://doi.org/10.25004/IJPSDR.2024.160323

Keywords:

Alzheimer’s, Elements, Neurodegeneration, Chelation, Oxidative damage, β-amyloid

Abstract

Alzheimer’s disorder is the most prevalent type of insanity. It can start with a slight loss of memory and progress to a loss of response to stimuli and interaction. Deregulation of the antioxidant response and neurotransmission has been linked to neuro-decadence illnesses, likely Alzheimer’s disorder. Metals, along with microelements, support the proper operation of the nervous system. Heavy and essential metals both increase tau protein hyperphosphorylation and Aβ assemblage. The root of Alzheimer’s disorder is summarized in this article, along with the roles played by daily exposure to substances like pesticides and some macro and microelements. So, by knowing them, we can limit their exposure of them in day-to-day life. Gaining insight into these functions in brain health and illness could lead to discovering new curative targets for neuro-decadence diseases. Since metal ions are implicated in most degenerative diseases, future treatments may target them. One method is to limit the ions’ ability to obstruct oxidative processes or disturb protein folding by chelating and sequestering them.

Downloads

Download data is not yet available.

References

Islam F, Shohag S, Akhter S, Islam MR, Sultana S, Mitra S, Chandran D, Khandaker MU, Ashraf GM, Idris AM, Emran TB. Exposure of metal toxicity in Alzheimer’s disease: An extensive review. Frontiers in Pharmacology. 2022 Aug 29;13:903099.https://doi.org/10.3389%2Ffphar.2022.903099.

Fan L, Mao C, Hu X, Zhang S, Yang Z, Hu Z, Sun H, Fan Y, Dong Y, Yang J, Shi C. New insights into the pathogenesis of Alzheimer's disease. Frontiers in neurology. 2020 Jan 10;10:1312. https://doi.org/10.3389/fneur.2019.01312.

Kametani F, Hasegawa M. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer's disease. Frontiers in neuroscience. 2018 Jan 30;12:328460.https://doi.org/10.3389%2Ffnins.2018.00025.

Zubčić K, Hof P, Šimić G. Metals in Alzheimer’s Disease. Biomedicines. 2023 Apr 1;11(4). https://doi.org/10.3390/biomedicines11041161.

Barbier P, Zejneli O, Martinho M, Lasorsa A, Belle V, Smet-Nocca C, Tsvetkov PO, Devred F, Landrieu I. Role of tau as a microtubule-associated protein: structural and functional aspects. Frontiers in aging neuroscience. 2019 Aug 7;11:204. https://doi.org/10.3389/fnagi.2019.00204.

De Benedictis CA, Vilella A, Grabrucker AM. The role of trace metals in Alzheimer’s disease. Exon Publications. 2019 Nov 21:85-106. https://doi.org/10.15586/alzheimersdisease.2019.ch6.

Nichols E, Steinmetz JD, Vollset SE, Fukutaki K, Chalek J, Abd-Allah F, Abdoli A, Abualhasan A, Abu-Gharbieh E, Akram TT, Al Hamad H. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. The Lancet Public Health. 2022 Feb 1;7(2):e105-25. https://doi.org/10.1016/s2468-2667(21)00249-8.

Rane D, Dash DP, Dutt A, Dutta A, Das A, Lahiri U. Distinctive visual tasks for characterizing mild cognitive impairment and dementia using oculomotor behavior. Frontiers in Aging Neuroscience. 2023;15. https://doi.org/10.3389/fnagi.2023.1125651.

Yano K, Hirosawa N, Sakamoto Y, Katayama H, Moriguchi T. 500 Aggregations of amyloid beta-proteins in the presence of metal ions. Toxicology Letters. 2003(144):s134. http://dx.doi.org/10.1016/S0378-4274(03)90499-1.

Wallin C, Sholts SB, Österlund N, Luo J, Jarvet J, Roos PM, Ilag L, Gräslund A, Wärmländer SK. Alzheimer’s disease and cigarette smoke components: Effects of nicotine, PAHs, and Cd (II), Cr (III), Pb (II), Pb (IV) ions on amyloid-β peptide aggregation. Scientific Reports. 2017 Oct 31;7(1):14423. https://doi.org/10.1038%2Fs41598-017-13759-5.

Wisessaowapak C, Visitnonthachai D, Watcharasit P, Satayavivad J. Prolonged arsenic exposure increases tau phosphorylation in differentiated SH-SY5Y cells: The contribution of GSK3 and ERK1/2. Environmental toxicology and pharmacology. 2021 May 1;84:103626. https://doi.org/10.1016/j.etap.2021.103626.

Shati AA, Alfaifi MY. Trans-resveratrol inhibits tau phosphorylation in the brains of control and cadmium chloride-treated rats by activating PP2A and PI3K/Akt induced-inhibition of GSK3β. Neurochemical research. 2019 Feb 15;44:357-73. https://doi.org/10.1007/s11064-018-2683-8.

Mao J, Yang J, Zhang Y, Li T, Wang C, Xu L, Hu Q, Wang X, Jiang S, Nie X, Chen G. Arsenic trioxide mediates HAPI microglia inflammatory response and subsequent neuron apoptosis through p38/JNK MAPK/STAT3 pathway. Toxicology and Applied Pharmacology. 2016 Jul 15;303:79-89. https://doi.org/10.1016/j.taap.2016.05.003.

Augusti PR, Conterato GM, Somacal S, Sobieski R, Spohr PR, Torres JV, Charão MF, Moro AM, Rocha MP, Garcia SC, Emanuelli T. Effect of astaxanthin on kidney function impairment and oxidative stress induced by mercuric chloride in rats. Food and chemical toxicology. 2008 Jan 1;46(1):212-9. https://doi.org/10.1016/j.fct.2007.08.001.

Gu H, Territo PR, Persohn SA, Bedwell AA, Eldridge K, Speedy R, Chen Z, Zheng W, Du Y. Evaluation of chronic lead effects in the blood brain barrier system by DCE-CT. Journal of Trace Elements in Medicine and Biology. 2020 Dec 1;62:126648. https://doi.org/10.1016%2Fj.jtemb.2020.126648.

Chattopadhyay, S., Bhaumik, S., Purkayastha, M., Basu, S., Chaudhuri, A. N., & Gupta, S. D. (2002). Apoptosis and necrosis in developing brain cells due to arsenic toxicity and protection with antioxidants. Toxicology letters, 136(1), 65-76. https://doi.org/10.1016/s0378-4274(02)00282-5.

Bashir S, Sharma Y, Irshad M, Gupta SD, Dogra TD. Arsenic‐induced cell death in liver and brain of experimental rats. Basic & clinical pharmacology & toxicology. 2006 Jan;98(1):38-43. https://doi.org/10.1111/j.1742-7843.2006.pto_170.x.

Wang L, Yin YL, Liu XZ, Shen P, Zheng YG, Lan XR, Lu CB, Wang JZ. Current understanding of metal ions in the pathogenesis of Alzheimer’s disease. Translational neurodegeneration. 2020 Dec;9:1-3. https://doi.org/10.1186/s40035-020-00189-z.

Syme CD, Viles JH. Solution 1H NMR investigation of Zn2+ and Cd2+ binding to amyloid-beta peptide (Aβ) of Alzheimer's disease. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 2006 Feb 1;1764(2):246-56. https://doi.org/10.1016/j.bbapap.2005.09.012.

Jiao Y, Yang P. Mechanism of copper (II) inhibiting alzheimer's amyloid β-peptide from aggregation: A molecular dynamics investigation. The Journal of Physical Chemistry B. 2007 Jul 5;111(26):7646-55. https://doi.org/10.1021/jp0673359.

Das TK, Wati MR, Fatima-Shad K. Oxidative stress gated by Fenton and Haber Weiss reactions and its association with Alzheimer’s disease. Archives of Neuroscience. 2015;2(2). http://dx.doi.org/10.5812/archneurosci.20078.

Gaetke LM, Chow CK. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology. 2003 Jul 15;189(1-2):147-63. https://doi.org/10.1016/s0300-483x(03)00159-8.

Branca JJ, Maresca M, Morucci G, Mello T, Becatti M, Pazzagli L, Colzi I, Gonnelli C, Carrino D, Paternostro F, Nicoletti C. Effects of cadmium on ZO-1 tight junction integrity of the blood brain barrier. International journal of molecular sciences. 2019 Nov 29;20(23):6010. https://doi.org/10.3390%2Fijms20236010.

Zhang T, Xu Z, Wen L, Lei D, Li S, Wang J, Huang J, Wang N, Durkan C, Liao X, Wang G. Cadmium-induced dysfunction of the blood-brain barrier depends on ROS-mediated inhibition of PTPase activity in zebrafish. Journal of hazardous materials. 2021 Jun 15;412:125198. https://doi.org/10.1016/j.jhazmat.2021.125198.

Rahman MA, Hannan MA, Uddin MJ, Rahman MS, Rashid MM, Kim B. Exposure to environmental arsenic and emerging risk of Alzheimer’s disease: perspective mechanisms, management strategy, and future directions. Toxics. 2021 Aug 14;9(8):188. https://doi.org/10.3390%2Ftoxics9080188.

Sharma A, Kumar S. Arsenic exposure with reference to neurological impairment: an overview. Reviews on environmental health. 2019 Dec 18;34(4):403-14. https://doi.org/10.1515/reveh-2019-0052.

Rahman MA, Rhim H. Therapeutic implication of autophagy in neurodegenerative diseases. BMB reports. 2017 Jul;50(7):345. https://doi.org/10.5483%2FBMBRep.2017.50.7.069.

Scheltens P, Blennow K, Breteler MM, De Strooper B, Frisoni GB, Salloway S, Van der Flier WM. Alzheimer's disease. The Lancet. 2016 Jul 30;388(10043):505-17. https://doi.org/10.1016/s0140-6736(15)01124-1.

Bertram L, Tanzi RE. Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nature Reviews Neuroscience. 2008 Oct;9(10):768-78. https://doi.org/10.1038/nrn2494.

Andrew RJ, Kellett KA, Thinakaran G, Hooper NM. A Greek tragedy: the growing complexity of Alzheimer amyloid precursor protein proteolysis. Journal of Biological Chemistry. 2016 Sep 9;291(37):19235-44. https://doi.org/10.1074/jbc.r116.746032.

Nhan HS, Chiang K, Koo EH. The multifaceted nature of amyloid precursor protein and its proteolytic fragments: friends and foes. Acta neuropathologica. 2015 Jan;129:1-9. https://doi.org/10.1007/s00401-014-1347-2.

Alzheimer's Association. 2016 Alzheimer's disease facts and figures. Alzheimer's & Dementia. 2016 Apr 1;12(4):459-509.

Bakulski KM, Seo YA, Hickman RC, Brandt D, Vadari HS, Hu H, Park SK. Heavy metals exposure and Alzheimer’s disease and related dementias. Journal of Alzheimer's Disease. 2020 Jan 1;76(4):1215-42. https://doi.org/10.3233/jad-200282.

Bihaqi SW, Bahmani A, Subaiea GM, Zawia NH. Infantile exposure to lead and late-age cognitive decline: relevance to AD. Alzheimer's & Dementia. 2014 Mar 1;10(2):187-95. https://doi.org/10.1016/j.neuro.2014.06.008.

Dou JF, Farooqui Z, Faulk CD, Barks AK, Jones T, Dolinoy DC, Bakulski KM. Perinatal lead (Pb) exposure and cortical neuron-specific DNA methylation in male mice. Genes. 2019 Apr 4;10(4):274. https://doi.org/10.3390/genes10040274.

Ward NI, Mason JA. Neutron activation analysis techniques for identifying elemental status in Alzheimer's disease. Journal of Radioanalytical and Nuclear Chemistry. 1987 Jul 17;113(2):515-26. http://creativecommons.org/licenses/by/4.0/.

Lanphear BP, Byrd RS, Auinger P, Schaffer SJ. Community characteristics associated with elevated blood lead levels in children. Pediatrics. 1998 Feb 1;101(2):264-71.https://doi.org/10.1542/peds.101.2.264.

Islam F, Shohag S, Akhter S, Islam MR, Sultana S, Mitra S, Chandran D, Khandaker MU, Ashraf GM, Idris AM, Emran TB. Exposure of metal toxicity in Alzheimer’s disease: An extensive review. Frontiers in Pharmacology. 2022 Aug 29;13:903099. https://doi.org/10.3389/fphar.2022.903099.

Ehmann WD, Markesbery WR, Alauddin MT, Hossain TI, Brubaker EH. Brain trace elements in Alzheimer's disease. Neurotoxicology. 1986 Jan 1;7(1):195-206.

Gaber HA, Aly EM, Mohamed ES, Elfoly M, Rabie MA, Talaat MS, El-Sayed ES. Linking Cognitive Impairment with Amyloid-β Accumulation in Alzheimer’s Disease: Insights from Behavioral Tests and FTIR Spectroscopy. Journal of Alzheimer's Disease Reports. 2023 Jan 1;7(1):1187-200. https://doi.org/10.3233%2FADR-230051.

Brookmeyer R, Evans DA, Hebert L, Langa KM, Heeringa SG, Plassman BL, Kukull WA. National estimates of the prevalence of Alzheimer’s disease in the United States. Alzheimer's & Dementia. 2011 Jan 1;7(1):61-73.

Huat TJ, Camats-Perna J, Newcombe EA, Valmas N, Kitazawa M, Medeiros R. Metal toxicity links to Alzheimer's disease and neuroinflammation. Journal of molecular biology. 2019 Apr 19;431(9):1843-68. https://doi.org/10.1016%2Fj.jmb.2019.01.018.

World Health Organization. Preventing disease through healthy environments: inadequate or excess fluoride: a major public health concern. World Health Organization; 2019. https://www.who.int/publications/i/item/9789240037656.

Schaumberg DA, Mendes F, Balaram M, Dana MR, Sparrow D, Hu H. Accumulated lead exposure and risk of age-related cataract in men. Jama. 2004 Dec 8;292(22):2750-4. https://doi.org/10.1001/jama.292.22.2750.

Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Fiske A, Pedersen NL. Role of genes and environments for explaining Alzheimer disease. Archives of general psychiatry. 2006 Feb 1;63(2):168-74. https://doi.org/10.1001/archpsyc.63.2.168.

M Bakulski K, S Rozek L, C Dolinoy D, L Paulson H, Hu H. Alzheimer's disease and environmental exposure to lead: the epidemiologic evidence and potential role of epigenetics. Current Alzheimer Research. 2012 Jun 1;9(5):563-73. https://doi.org/10.2174/156720512800617991.

Ashok A, Rai NK, Tripathi S, Bandyopadhyay S. Exposure to As-, Cd-, and Pb-mixture induces Aβ, amyloidogenic APP processing and cognitive impairments via oxidative stress-dependent neuroinflammation in young rats. Toxicological Sciences. 2015 Jan 1;143(1):64-80. https://doi.org/10.1093/toxsci/kfu208.

Chen L, Liu L, Huang S. Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5. Free Radical Biology and Medicine. 2008 Oct 1;45(7):1035-44. https://doi.org/10.1016/j.freeradbiomed.2008.07.011.

Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. science. 2002 Jul 19;297(5580):353-6. https://doi.org/10.1126/science.1072994.

Wang J, Gu BJ, Masters CL, Wang YJ. A systemic view of Alzheimer disease—insights from amyloid-β metabolism beyond the brain. Nature reviews neurology. 2017 Oct;13(10):612-23. https://doi.org/10.1038/nrneurol.2017.111.

González-Domínguez R, García-Barrera T, Gómez-Ariza JL. Characterization of metal profiles in serum during the progression of Alzheimer's disease. Metallomics. 2014 Feb;6(2):292-300. https://doi.org/10.1039/c3mt00301a.

Atwood CS, Moir RD, Huang X, Scarpa RC, Bacarra NM, Romano DM, Hartshorn MA, Tanzi RE, Bush AI. Dramatic aggregation of Alzheimer Aβ by Cu (II) is induced by conditions representing physiological acidosis. Journal of Biological Chemistry. 1998 May 22;273(21):12817-26. https://doi.org/10.1074/jbc.273.21.12817.

Bush AI, Tanzi RE. Therapeutics for Alzheimer's disease based on the metal hypothesis. Neurotherapeutics. 2008 Jul 1;5(3):421-32. https://doi.org/10.1016%2Fj.nurt.2008.05.001.

Gaeta A, Hider RC. The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy. British journal of pharmacology. 2005 Dec;146(8):1041-59. https://doi.org/10.1038/sj.bjp.0706416.

Zatta P, Drago D, Bolognin S, Sensi SL. Alzheimer's disease, metal ions and metal homeostatic therapy. Trends in Pharmacological Sciences. 2009 Jul 1;30(7):346-55. https://doi.org/10.1016/j.tips.2009.05.002.

Perez LR, Franz KJ. Minding metals: tailoring multifunctional chelating agents for neurodegenerative disease. Dalton transactions. 2010;39(9):2177-87. https://doi.org/10.1039%2Fb919237a.

McLachlan DC, Kruck TP, Kalow W, Andrews DF, Dalton AJ, Bell MY, Smith WL. Intramuscular desferrioxamine in patients with Alzheimer's disease. The Lancet. 1991 Jun 1;337(8753):1304-8. https://doi.org/10.1016/0140-6736(91)92978-b.

Cherny RA, Legg JT, McLean CA, Fairlie DP, Huang X, Atwood CS, Beyreuther K, Tanzi RE, Masters CL, Bush AI. Aqueous dissolution of Alzheimer's disease Aβ amyloid deposits by biometal depletion. Journal of Biological Chemistry. 1999 Aug 13;274(33):23223-8. https://doi.org/10.1074/jbc.274.33.23223.

Boldron C, Van der Auwera I, Deraeve C, Gornitzka H, Wera S, Pitié M, Van Leuven F, Meunier B. Preparation of Cyclo‐Phen‐Type Ligands: Chelators of Metal Ions as Potential Therapeutic Agents in the Treatment of Neurodegenerative Diseases. ChemBioChem. 2005 Nov 4;6(11):1976-80. http://dx.doi.org/10.1002/cbic.200500220.

Dedeoglu A, Cormier K, Payton S, Tseitlin KA, Kremsky JN, Lai L, Li X, Moir RD, Tanzi RE, Bush AI, Kowall NW. Preliminary studies of a novel bifunctional metal chelator targeting Alzheimer's amyloidogenesis. Experimental Gerontology. 2004 Nov 1;39(11-12):1641-9.

Cui Z, Lockman PR, Atwood CS, Hsu CH, Gupte A, Allen DD, Mumper RJ. Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer's and other CNS diseases. European journal of pharmaceutics and biopharmaceutics. 2005 Feb 1;59(2):263-72. https://doi.org/10.1016/j.ejpb.2004.07.009.

Lee JY, Friedman JE, Angel I, Kozak A, Koh JY. The lipophilic metal chelator DP-109 reduces amyloid pathology in brains of human β-amyloid precursor protein transgenic mice. Neurobiology of Aging. 2004 Nov 1;25(10):1315-21. https://doi.org/10.1016/j.neurobiolaging.2004.01.005.

Zheng H, Gal S, Weiner LM, Bar‐Am O, Warshawsky A, Fridkin M, Youdim MB. Novel multifunctional neuroprotective iron chelator‐monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition. Journal of neurochemistry. 2005 Oct;95(1):68-78. https://doi.org/10.1111/j.1471-4159.2005.03340.x.

Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ, Boonplueang R, Viswanath V, Jacobs R, Yang L, Beal MF, DiMonte D. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson's disease. Neuron. 2003 Mar 27;37(6):899-909. https://doi.org/10.1074%2Fjbc.M109.000638.

Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim YS, Huang X. Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron. 2001 May 1;30(3):665-76. https://doi.org/10.1074%2Fjbc.M110.128512.

Zheng H, Youdim MB, Weiner LM, Fridkin M. Synthesis and evaluation of peptidic metal chelators for neuroprotection in neurodegenerative diseases. The Journal of peptide research. 2005 Oct;66(4):190-203. https://doi.org/10.1111/j.1399-3011.2005.00289.x.

Deraeve C, Pitié M, Mazarguil H, Meunier B. Bis-8-hydroxyquinoline ligands as potential anti-Alzheimer agents. New Journal of Chemistry. 2007;31(2):193-5. doi ="10.1039/B616085A.

Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L, Kiers L, Cherny R, Li QX, Tammer A, Carrington D. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Archives of neurology. 2003 Dec 1;60(12):1685-91. https://doi.org/10.1089%2Fars.2012.5027.

Bush AI. Metal complexing agents as therapies for Alzheimer’s disease. Neurobiology of aging. 2002 Nov 1;23(6):1031-8. https://doi.org/10.1016/s0197-4580(02)00120-3.

Tateishi J. Subacute myelo‐optico‐neuropathy: Clioquinol intoxication in humans and animals. Neuropathology. 2000 Sep;20:20-4. https://doi.org/10.1046/j.1440-1789.2000.00296.x.

Yassin MS, Ekblom J, Xilinas M, Gottfries CG, Oreland L. Changes in uptake of vitamin B12 and trace metals in brains of mice treated with clioquinol. Journal of the neurological sciences. 2000 Feb 1;173(1):40-4. https://doi.org/10.1016/s0022-510x(99)00297-x.

Di Vaira M, Bazzicalupi C, Orioli P, Messori L, Bruni B, Zatta P. Clioquinol, a drug for Alzheimer's disease specifically interfering with brain metal metabolism: structural characterization of its zinc (II) and copper (II) complexes. Inorganic chemistry. 2004 Jun 28;43(13):3795-7. https://doi.org/10.1021/ic0494051.

Wagner CC, Calvo S, Torre MH, Baran EJ. Vibrational spectra of clioquinol and its Cu (II) complex. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering. 2007 Apr;38(4):373-6.

Budimir A, Humbert N, Elhabiri M, Osinska I, Biruš M, Albrecht-Gary AM. Hydroxyquinoline based binders: Promising ligands for chelatotherapy?. Journal of inorganic biochemistry. 2011 Mar 1;105(3):490-6. https://doi.org/10.1016/j.jinorgbio.2010.08.014.

Cherny RA, Legg JT, McLean CA, Fairlie DP, Huang X, Atwood CS, Beyreuther K, Tanzi RE, Masters CL, Bush AI. Aqueous dissolution of Alzheimer's disease Aβ amyloid deposits by biometal depletion. Journal of Biological Chemistry. 1999 Aug 13;274(33):23223-8. https://doi.org/10.1074/jbc.274.33.23223.

Grossi C, Francese S, Casini A, Rosi MC, Luccarini I, Fiorentini A, Gabbiani C, Messori L, Moneti G, Casamenti F. Clioquinol decreases amyloid-β burden and reduces working memory impairment in a transgenic mouse model of Alzheimer's disease. Journal of Alzheimer's disease. 2009 Jan 1;17(2):423-40. https://doi.org/10.3233/jad-2009-1063.

Yang GJ, Liu H, Ma DL, Leung CH. Rebalancing metal dyshomeostasis for Alzheimer’s disease therapy. JBIC Journal of Biological Inorganic Chemistry. 2019 Dec;24(8):1159-70. http://dx.doi.org/10.1007/s00775-019-01712-y.

Fasae KD, Abolaji AO, Faloye TR, Odunsi AY, Oyetayo BO, Enya JI, Rotimi JA, Akinyemi RO, Whitworth AJ, Aschner M. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer’s disease: Limitations, and current and future perspectives. Journal of Trace Elements in Medicine and Biology. 2021 Sep 1;67:126779. https://doi.org/10.1016/j.jtemb.2021.126779.

Downloads

Published

30-05-2024

Issue

Section

Review Article

How to Cite

“Metallic Mysteries: Deciphering Their Contribution to Alzheimer’s Pathogenesis”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 16, no. 3, May 2024, pp. 496-05, https://doi.org/10.25004/IJPSDR.2024.160323.